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1. Introduction

For the Wiener process a large number of results on its nonlinear analysis ~ q

V
U~~~ have been developed (see Wiener (1958) and McKean (1973)), as well as a fairly

complete and rich stochastic calculus (see for instance Friedman (1976)). Since ~
the Wiener process is a Gaussian martingale , it is natural to investigate the ex-

tent to which these or similar results are true for (general ) Gaussian processes

~~~~~~~~~ and for (general) martingales .

~~~~ For martingales the corresponding stochastic calculus is now well developed

(see Kunita and Watariabe (1967) and Meyer (1976)). The nonlinear analysis and a

stochastic calculus for Gaussian processes have been the 3ubject of [3], [4] and

~~~ [51 . This article is a survey of these references and its purpose is to make the

main results and the basic ingredients of the approach easily accessible to the

reader.

The basis of the approach is provided by the structure of the nonl inear space

of a Gaussian process as developed by Kalcutani (1961), Neveu (1968) and Kallianpur

‘ 
>1  

(1970); this is reviewed in Section 2. Sections 3 and 4 include results on the

C... . nonlinear analysis of Gaussian processes. Results currently available on the

stochastic calculus of Gaussian processes are presented in Sections 5 to 8. The

definition of the stochastic integral is in Section 6, its main properties in Sec-

a .—._~~ tion 5, a useful Riemann-like expression in Section 7, and the differential foru.i-

la in Section 8. Stochastic differential equations with (general) Gaussian noise

are currently under study.

The material in Sections 3, 4 (second half), 5 and 6 is fron [3]; the first half

of Section 4 is from [4]; and Sections 7 and 8 are fron [5].

This research was supported by the Air Force Office of Scientific Research under
Grant AR)SR-75-2796.
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2. The Nonlinear Space of a Gaussian Process

The following notation and terminology will be used throughout. X (Xi, t€T)

is a Gaussian process with mean zero and covariance function R(t,s), defined on a

probability space (~,8,P), and I is an interval on the real line (even though more

general index sets could be used). 8(X) is the a- field generated by the random

variables of X. The nonlinear space of X, L2(X) = L2(c~,8(X) ,P), consists of all

8(X)-measurable random variables with finite second moment which are called (non-

linear) L2-functionals of X. The linear space of X, H(X), is the closed subspace

of L2(X) spanned by X~, t€T, and its elements are called linear L2-functionals of

X. For each p = 1,2,..., P~(X) is the set of all polynomials in the elements of

H(X) with degree �p, P0(X) is the set of constants, Q~(X) is the set of all poly-

nomials in P~(X) which are orthogonal to P~~1(X)~ Q0(X) 
= P0(X), and the closure

(X) of %(X) in L2(X) is called the p-th h~~ geneous chaos. For p ~ q, (X) i.

(X).

The structure of the nonlinear space of a Gaussian process is given by the

following relationship, which can be found in [7] or [11], and which forms the

basis of our analysis ,

L2 (X) = . ~jX) • H~~(X)
p-0 P p=0

Here e denotes tensor product and syninetric tensor product . means “is isomor-

phic to” and the isonorphism ‘~ from , 0H~~(X) onto L2 (X) maps each H~~(X) onto

If E€H(X) then

~(exp(~~)}  = exp (~-½E~
2)

where exp (~
) = (p!) ~~~p , and if . ,~ J~EH CX) are orthogonal then

= (P !)~~~1I H .p , E~~
(
~j )

where p = p1+.. ~~~ 
E denotes expectation, and the Hermite polynomial H~~02 with

degree p and parameter a2 is defined as follows: {ft~02(F)1 p=0,l,2,...} is ob-

tained by applying the Gram-Schmidt procedure to orthogonalize the sequence of

random variables {~P,p_0,l,2,.. . in L20), where ~ is a Gaussian variable with

mean zero and variance a2.
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3. Multiple Wiener Integrals (t4~I’s)

In order to introduce the ~4~I’s or order p l ,2,...

I~(f~) = f . .  .f f~(t1,. .. 1 t~)dXt ...dXt = f

we first have to define the space of (deterministic) integrands A2 (e~R).

For p—i, A2(R) is tht~ completion of the space of all step functions on T,

f(t) = 

~ =lfnh
(%Ibn]

(t)I with respect to the inner product

= /f  f(t)g(s)d R(t,s) = Z fn~~{R~ n~
dm) +R(an,cm) 

- R(an,dm) 
- R(bniC )}

rF n-i in-i

(where g(t) = 

~~ i~~
i(cd ] (t))• Thus A2(R) is a Hu bert space of “functions” on

T; it contains those functions f for which the Riemann integral If f(t ) f ( s) d 2R(t ,s)

exists, and when R is of bounded variation it contains all bounded measurable func-

tions. When R(t,s) = min(t,s), A2(R) = L2(T,dt). The l~ I of order i, 11:A 2(R) +

H(X), is the isometry into H(X) defined by
• 

Ii(nLfn
i(an,bn]

) 
n~i~~~~n~~

an
)

I~ becomes onto H(X), hence an isanorphism, if X.~ 0 a.s. for some t0EI , as we
0

now assui~ (otherwise repiace H (X) by H(AX) , the linear space of the increments

AX of X).

A 2 (e~R) is defined similarly , by starting with step functions on T~ , and is

isomorphic to e~A 2 (R) . A2(~~R) is the subspace of all synii~ tric “functions” in

A 2 (.~R) (a concept defined again starting with step functions) and A 2 (~~R) ~PA~ (R).

Since A2(R) H(X) wider I~, A2 ( P R) PA~ (R) is isomorphic to H~’(X) and we denote

this isanorphism by 1 P• Then the ?4V1 of order p, I~: A2(~~R) ÷ ~~(X), is defined

by ½ 
—

— (p1) $ •

and is extended to A 2 (~PR) by I~ (f) = I~ (f) where T is the synm~ tric tensor of

feA 2 (s1’R).

Thus each ~~I ~ is a bounded linear operator from A 2 (.
PR) onto ~~(X) ,  with the

fo11a~ring properties :

E{T~(f)I~(g)} — p1 <? ,g>~~( P ~)

4
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E{Ip(f)Iq(g)} = 0 if r ~ q
k

~ (~ ~
®
~k 

k) = 
~~ 

j-~ ~~~p 
j=l t~’j ’ I I  j i

where 
~~~~~~~~~~~ ,4~} is an orthogonal set in A2(R) and p1+ . .+p~ p. Also every L2 -

functional 8 of X, O€L2(X), has an orthogonal development

O - E O = ~~I ( f ) =  ~ f f ( t ) d x~p=1 p P

for some f~€A2(.~R), and if 0 - E0 = ~~.,1I~ (f~) = 1I~ (g~) then = 
~~~~
, p � 1.

MVI ’s of the following type can also be defined

J~(f~) = ~~. . .~~ ~~~~~ .. ~tp)Xt~~. .X~ dt1. . .dt~, = f f~(t) x~ dt
for f~eA 2(.

PR) with similar properties when X is mean square continuous . Finally
the ~4~I ‘s of both types can be evaluated from the sample paths of X.

4. Nonlinear Systems with Gaussian Inputs
Consider a noniinear system with input the mean square continuous Gaussian pro-

cess X — (X
~
, tET) and output the second order process Y = {Y

~
, tET} , i.e. the only

asstlaption on the system is that YtEL2(X), tET. Then, by Section 3, the output Y
can be represented by

= + 
p~i ~~

• •~~ f~(t;t1~.. . ~~~~~ . .x
~~
dti.. .dt~

where f~ (t; ) E A 2 (FR). The action of the system to the input X is thus represented
by the seq~~nce of kernels {f ~} . .1 which depends on the input X (distinct input
Gaussian processes will in general produce distinct sequences of kernels) . These
kernels can be determined from knowledge of the jo int statistics of the input and
output processes . P.breover, for almost every sample funct ion of X as its input ,
theoutput of the nonlinear system has a Volterra representation (i.e. a series
representation like above with the ~ VI ‘s replaced by Lebesgue integrals) whose
kernels can be found fran the kernels (f ~}; i.e. assuming only that EY~ < ~~, tcT ,
we have the remarkable result that for a small class of deterministic inputs (al -
most all sample functions of X) the nonlinear system has a Volterra input -output
representation - a result obtained by Fr&het (1910) for large classes of inputs,

I



like C(T) or L2(T), when the system is continuous (i.e., the output at each fixed

t , is a continuous functional on C(T) or L2(I)). Finally if the nonlinear system

has a Volterra input-output representation with kernels {K~} when acting on deter-

ministic inputs in L2(T), the relationship between the t~~ sets of kernels {f~}

and {K~} can be established. For the details see [4].

When the input Gaussian process X has stationary increments with say X0 = 0

a.s., a more convenient representation of the system output is

= + 

p~l I • 
~~ 

f~(t;t1~.. . ,t~)dXt .. .dX~

where f~(t;.)~A2(a
PR). When the system is time invariant, in the sense that

f~(t;t1~ .. - ~t~) g~(t1-t,... ~t~
_t)

then Y is strictly stationary and is called X-presentable. A natural question is

how large is the class of X-presentable processes, or the class of processes

which can be approximated by X-presentable processes. By introducing a Fourier

transform in the spaces A 2(.~R),  results similar to those valid when X is the

Wiener process can be proved:

(i) If X has absolutely continuous spectral distribut ion , then every X-presen-

table process is strongly mixing.

(ii) (the analogue of the Wiener-Nisio theorem) . If X is sample continuous,

ergodic , and satisfies an additional weak condition (valid when X has rational

spectral density) , then every measurable, ergodic, strictly stationary process is

the limit in law of a sequence of X-presentable processes .

S. The Stochastic Integral and its Properties

The appropriate space of stochastic integrands f for the stochastic integral

1(f) — f f(t)d X
I

is a generalization of the space A2 (R) denoted by A2.L ~~ 
(R). Like A2(R),

A Z .L (x) (R) is the completion of the space of all L2 (X) -valued step functions on I ,

f(t ) ” _ l fn1(~~ ,b~] (t)~ f~EL 2 (X), with respect to the inne r product

— ~~E {f(t) ~ (s) }d2R(t ~s) —

~~ Ji~~
fn }{R(bn~dm)+R (b ,c )}

4



(where g(t) = ~~~~~~~~~~~~~~ g~~L2(X)). Thus A2;L (X)(R) is a Hu bert space of

“second order processes” on T and its properties are analogues of those of A2(R).

In particular, when R is of bounded variation A2.L (x.,(R) contains all measurable
‘ 2~ 

‘

second order processes f(t) with Ef Ct) bounded, and if R(t,s) = min(t,s) then

L ~~ 
(R) = L2~ L ~~ 

(T,dt), the Hilbert space of all Lebesgue square integrable
‘ 2~ 

-‘ ‘ 2~ ~L2(X) -valued functions on T. Since L2(X) = e .
~ ~~

(X) we have

A 2;L 2 (X) (R) =

The stochastic integral

1: A2L(X)(R) + L~(X) = L2(X)e~~

is then an unbounded, densely defined, closed linear onto map. Its detailed defin-

ition is given in the next section. Here we sunnuarize its basic properties. Each

1t2;L(X)(R) belon~ to the domain V(1) of the stochastic integral which, when re-

stricted to A2;;(x)(R)~ 
is a bounded linear operator onto %+1(X) with norm

(p+l)½ . If fEA2;j~ (X)(R) and f = 

~~=o~p ’ ~p~~2;;(x) 0
~) ’ then f€P (I) if and only

if ~p-0
E [l(f ~,)]~ < ~~~, in which case 1(f) = ~ _0I(f~).

Since I is onto L~(X) , every L2-functional 0 of X, 0eL2(X), has a stochastic

integral representation

o = E0 + f f(t)dxtI
for some fEV( I) . In fact f may be taken to be adapted to X , i.e. fE V( r )nA 7~L x~ 

(R)

where A7~L (X) (R) is the closed subspace of A 2~ L (X) (R) generated by the simple

functions adapted to X (i.e. f(t) = lfnl (~~~~~J (t) where each f~ is

measurable) . Thus the stochastic integral is defined for general (not necessarily

adapted) integrands , and when X is the Wiener process it extends the Ito integral

and it agrees with Skorokhod’s (1975) generalization of the ItO integral to not

necessarily adapted integrands.

A step function f(t) = 
~n_l

mn1 (a b 1
(t), f~€L2(X), is called future increments

independent (fii) if each f~ is independent of the increments of X after ~~ and

• the closed subspace of A 2 ; L (X) (R) generated by the fii step functions is denoted

by tt Z ;L (X) (R)~ A~~~~(x) (R) belongs to the domain of the stochastic integral and 

. - . . ~~~~-- S 



when the stochastic integral is restricted to it it becomes norm preserving, like

the ItO integral (its range l(A~~ (x~
(R)) is not yet characterized).

‘ 2~ ~As an indicat ion of the calculation of the sto~nastic integral let us consider

the simplest possible integrand f(t) O$(t), O~L2(X), ~)EA2(R). If 0 and f14(t)dXt

are independent , then

f o$(t)dX = o f ~~(t)dX
T T

If O€H(X), then

f 04 (t)dX~ = 0 f •(t)dX~ - E(O f 
~
(t)dXt)T T T

?‘bre important , when R is continuous and of bounded variation on Ia,bllxIa,bI we

have

(5.1) f
b
~~~ 2(X )~~ = ~~~~~~~ {H~~1~~~O~) 

- Hp+l ,02 (X a)} p � a

~
b
exp(Xt~½(y~)dXt = exp(Xb-½a~) - exp(X a~½o~

)

where Y~ = EX~ R(t,t). Thus the Hermite polynomials H.~,0
2(Xt) play the role of

custanarary powers , X~ , and exp(Xt -½a~) the role of the customary exponential ,

exp(Xt), in this stochastic calculus.

The stochastic integral I f(t)dX t for a Gaussian process X with mean function

of bounded variation may be defined as f f ( t) dl n
t + ff(t)d (X t -mt) when both integers

exist. Here, the first integral is either the sample path or the mean square inte-

gral and the second is the stochastic integral for zero mean Gaussian process.

The relationship between this stochastic integral and sane previously known

integrals (e.g. when X is a Gaussian semi-martingale or when X has paths of bounded

variation) is given in Sections 7 and 8.

6. The Definition of the Stochastic Integral

Here we present the definition of the stochastic integral I and its domain 0( 1).

1 is the composition of the maps

I — 0 • • •
-l 

•

shown in the following diagram and defined below. It should be noted that $ is the

isoinorphism between the nonlinear space of X and the sy~iinetric tensor products of

its linear space (and 00 is an isomorphism closely related to it) and if these two



spaces were identified, as is usually done, ~ and would not appear in the ex-

pression of I. The important ingredients of the stochastic integral 7 are the

tensor product integral I, and the map ‘V which “synunetrizes” in an appropriate way

the tensor product of the integral ‘a •
I ~-l

A2.L (X~(R) L 2 (X)eH(X) ~~ { • H P (X)}aH(X)— p—0
i ,-l

0(1) H ;0 V(’V) —f-> a H~~(X) ~ L~ (X)

-l 
p

A2~~~(X)
(R) ;~
‘ ~~(X)eH(X) -P H~~(X)aH(X) ~~ o ~~

P+l(x) ~

The tensor product integral I (f) = fTf(t)edX is the isanorphism from A 2 •L tX~ 
(R)

‘ 2~ 
-‘

onto L2 (X)aH(X) defined for simple functions in 
~2~L ~~~~~ 

(R) by
‘ 2~ ~

Ia ( f nl ( a b l (t)) = 
~~~~ 

a

The isomorphism from .~~0F~~ (X) onto L2(X) has been denoted by 0, and Oo is the

corresponding isanorphism from {•~~ )H~ ’(X) J a H(X) onto L2 (X) • H(X). ~ is the

natural isoinorphism from Rail (X) onto H (X) , ‘i1,~ (ax) = a~, and for each p=l , 2,...,

is a bounded linear map from H~~(X) • H (X) onto H~~4 l (X) with norm (p+l) ½ de-

fined as follows: if {~~,yeF} is a cai~lete orthonormal set (CONS) in H(X) then

~~F- ~~~ k ½~~~~l— ~~~~~~a.. .o
~ 

) • = (p+l) 
~ 

a.. .
~~~~ 

• ‘ P=~l
÷
~

‘V = •p=Ø~Vp is the map from ~~~~~~~~~ a H(X) onto .1H~
P(X) whose restriction

to each H~~(X) a H(X) is ~~ Since I I’Vp I I = (p+l)½ is unbounded in r ‘V is an

unbounded, densely defined linear map with domain V( ’V) , the set of all

a H(X) such that 
~~oII’~

(
~)I 1

2 
< ~ ~~~re imo$p ’ •1~ 

being the

projection of~~ onto H~~(X) • H(X) . Then H = Oo~
V(’V) } and the domain of the stoch-

astic integral is 0(1) = I~~(H) .

7. A Useful Expression for the Stochastir Integral

Here we express the stochastic integral of a certain class of integrand pro-

cesses in terms of Rie~nann sums involving a tensor product denoted by c~. This ten-

sor product c~ turns out to be the “natural” product of elements of L2 (X) , in view



of its tensor product structure • 0H~~(X) ~ L2(X) . Just as the usual product of

elements of L2(X) may not be in L2(X), the o product is not defined for all ele-

ments of L2(X). When 
~l;...,~k

EH(X), p1,.. ‘~~‘K 
� 0, and 

~~~~~~~~ 
= p, we define

H 2~~l~~~”~~ 2~~k~ 
= (p!)20(~1 ~~~

®
~k ~p1,E~1 ~~~~~

For general elements 0l,~ • 
~
0k of L2(X) the tensor product 0lc~. GOk is defined

through their Cameron-Martin expansions provided the resulting series converges.

It is easy to see that as a binary operation the tensor product ~ is coninuta-

tive , associative and bilinear . Therefore, the algebraic manipulation of L2-

functionals under the usual product still holds true under the tensor product 0

The significance of the tensor product o is that most algebraic fornulae will have

new analytic meaning in terms of Gaussian r. v. ‘s.

The explicit relationship between the tensor product o and the usual product

of certain L2-functionais of X can be derived. Here are two examples. If

81,02EL2(X) are independent then

01 ~~
‘ 82 

= 8182EL2(X)

If F(x) and G(x) are infinitely differentiable functions on R and if there exist

constants c • d > 0 such that IF (P) 
(0) 1 + I G ~~~ (0) 1 � cdP for all p � 0, then for

~,T)EH(X)

~~~~ ~F(~)G(r~) = ~ ~
_

~;t:!_ ~~~~~~ c~
(7.1) p—0

(_Er ‘~P ~ ~F(~) o G(~) = -~~~~~
‘ F’- ‘(~)G’- ‘(ii)p-0 p.

Now consider the Rieinann-Stieltjes tensor product integral I f(t)odxt for

f: T + L2 (X) . This integral can be defined as the mean square l imit (if it exists

and is unique) of the corresponding Riemann sums Zf(t~)o(X t ~~~~~~~ 
(t
~
�t
~
�t
~+1
).

1+1 1
When dealing with this integral , we shall always assume that T = [a,b], f(t) is

mean siuare continuous and R(t,s) is of bounded variation on [a,bJx [a,bJ. When the

integral I f(t)ødX~ exists then f belongs to the domain of the stochastic integral

and the two integrals are equal :



(7.2) ff(t)dx t ff(t)QdXt

If f(t)€~~(X) for all tEl, then f(t)odX
~ 

exists . Also if F(t,x) is a function on

[a,b]xR continuous in t and infinitely differentiable in x, and if

(7.3) there exist c,d > 0 such that sup — F(t,0)j < cd~ for all p � 0,
a�t�b

then ff(t)adXt exists .

The equality between this Riemann-Stieltjes integral and the stochastic inte-

gral, (7.2), provides a way of evaluating the stochastic integral, and following

are some examples .

1. A routine computation shows that

b ap ® = -cx~~
1 

- X 1)

which is equivalent to (5.1).

2. Let X E W be the Wiener process and let F(x) be a function satisfying (7.3).

Given u � 0, a < c < c+u � b, we have the following expression for the stochastic

integral of the anticipating functional F(W~+~):

bf F(W~4.~)dW~ = lu ~ F(W~-~~~) (W~ -Wt )a 1 i+l 1

= lu 
~ 
{F~W~~~)(W~ -Wi ) 

- F’(W
~~+u

)(ti+1~
tj)}

1 1+1 1 1

= R f F( )~~~ +

where Rf~
F(W

~+~
)dWt is the usual Riemann-Stieltjes integral 

in the mean square

sense.
b

3. f X~adX~ = Em 
~ 
X,~ a(X

t 
-X.~a 1 i+l i

= l i m~~ Xt a(Xt -Xt )
i+l j+l i

implies that

lum{~ (Xt -x~ )
2 

- 

~ 
E(X

~ 
-X~ )

2} = 0
j +l i i+1 i

Consequently, the (mean square) q~~dratic variation of X on [a ,b] along any seq-

uence of partitions whose mesh goes to zero exists and is given by



Vb = R(D~)

where D~ is the diagonal of [a,b]x[a,b] and R represents the signed measure

corresponding to the covariance R( t,s). Furthermore , if the uniform limit of

(R(t+u,t)-R(t,t)}u~~ , exists as u-1-0 on a�t�b and if it is denoted by

then

(7.4) = (o
~
-
~~) 

- 2f R1(t,t)dt

4. Suppose X is a solution of the stochastic differential equation

dX~ 
= a(t,X

~
)dt + b( t)dW

~

where W is the Wiener process and a(t ,x) and b( t) are smooth scalar functions, and

that F(t,x) satisfies (7.3). Then the seini-martingale stochastic integral is

Mf F(t,Xt)dXt = f F(t,Xt)a( t,X
~
)dt + f F(t,Xt)b(t)dWt

and the stochastic integral becomes

f F(t ,X~)odX~ = J [F(t,Xt)oa (t,Xt)]d t + I [F(t,X~)0b(t)}~~
It then follows that

(_l)P 2f F(t ,X~)odX~ 
= Mf F(t,Xt)dX~ 

+ 
p=l p! ~

where F~(t~x) = aPF(t,x)/3x~, a~(t~x) = ~~a(t,x)/~x~. When F(t,x) = a(t)x then

X is a Guassian semi-martingale and

f F(t ,X~)dX~ = Mf F(t ,X~)dXt - f (1~Fx (t ,Xt)a(t)dt

When F(t,x) = a(t) then our stochastic integral and the semi -martingale integral

are equal.

8. The Differential Formula

Suppose T = [a ,b]. Suppose R(t,s) is continuous, of bounded variation and

= R(t ,t) is absolutely continuous. Suppose the uniform limit {R(t+u,s) -

R(t,s)}u~~, as u-l-0, exists on [a,bPc[a,bJ and is denoted by R1(t,s). Finally,

suppose F(t,x) is continuously differentiable with respect to t and satisfies con-

dition (7.3) . Then we have the following diff erential formula



(8.1) dF(t,X
~
) = Ft(t ,Xt

)d t + F
~
(t,Xt)dX~ 

+ ½F
~~
(t,Xt)dr~

i.e.

F(tz,Xt ) - F(ti,Xt ) = + f
2F(t x )dx + ½ f

t 2F (t x )d0 2

for all a�t1�t2�b , where the first and the third integrals are mean square or

sample path integrals. The condition of F(t,x) may be relaxed when a specific R

is given .

It may seem surprising that this differential formula does not involve the

quadratic variation V of X. However, V is used implicitly in view of (7.4).

Note that if X is a Gaussian martingale then (8.1) coincides with the differ-

ential formula for martingales, and that if = R(t,t) is constant then (8.1)

is the same differential formula as in the usual calculus.

Finally suppose that X has sample paths of bounded variation and G(t,x) is a

continuous function satisfying (7.3). Then it follows from (8.1) that

U G(t,Xt)dXt = f G(t,X.,)dxt + ½ 1 Gx(t,Xt )do~

where L indicates Lebesgue integral. If, in addition, is constant then the

stochastic integral equals the Lebesgue integral .
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